Abstract
Taking the Futian District as the research area, this study proposed an effective urban land cover mapping framework fusing optical and SAR data. To simplify the model complexity and improve the mapping results, various feature selection methods were compared and evaluated. The results showed that feature selection can eliminate irrelevant features, increase the mean correlation between features slightly, and improve the classification accuracy and computational efficiency significantly. The recursive feature elimination-support vector machine (RFE-SVM) model obtained the best results, with an overall accuracy of 89.17% and a kappa coefficient of 0.8695, respectively. In addition, this study proved that the fusion of optical and SAR data can effectively improve mapping and reduce the confusion between different land covers. The novelty of this study is with the insight into the merits of multi-source data fusion and feature selection in the land cover mapping process over complex urban environments, and to evaluate the performance differences between different feature selection methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.