Abstract

In the field of Nuclear Forensics, there exists a plethora of different tools to aid investigators when performing analysis of unknown nuclear materials. Many of these tools offer visual representations of the uranium ore concentrate (UOC) materials that include complimentary and contrasting information. In this paper, we present a novel technique drawing from state-of-the-art machine learning methods that that allows information from scanning electron microscopy images (SEM) to be combined to create digital encodings of the material that can be used to determine the material’s processing route. Our technique can classify UOC processing routes with greater than 96% accuracy in a fraction of a second and can be adapted to unseen samples at similarly high accuracy. The technique’s high accuracy and speed allow forensic investigators to quickly get preliminary results, while generalization allows the model to be adapted to new materials or processing routes quickly without the need for complete retraining of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call