Abstract

Existing unsupervised keyphrase extraction methods typically emphasize the importance of the candidate keyphrase itself, ignoring other important factors such as the influence of uninformative sentences. We hypothesize that the salient sentences of a document are particularly important as they are most likely to contain keyphrases, especially for long documents. To our knowledge, our work is the first attempt to exploit sentence salience for unsupervised keyphrase extraction by modeling hierarchical multi-granularity features. Specifically, we propose a novel position-aware graph-based unsupervised keyphrase extraction model, which includes two model variants. The pipeline model first extracts salient sentences from the document, followed by keyphrase extraction from the extracted salient sentences. In contrast to the pipeline model which models multi-granularity features in a two-stage paradigm, the joint model accounts for both sentence and phrase representations of the source document simultaneously via hierarchical graphs. Concretely, the sentence nodes are introduced as an inductive bias, injecting sentence-level information for determining the importance of candidate keyphrases. We compare our model against strong baselines on three benchmark datasets including Inspec, DUC 2001, and SemEval 2010. Experimental results show that the simple pipeline-based approach achieves promising results, indicating that keyphrase extraction task benefits from the salient sentence extraction task. The joint model, which mitigates the potential accumulated error of the pipeline model, gives the best performance and achieves new state-of-the-art results while generalizing better on data from different domains and with different lengths. In particular, for the SemEval 2010 dataset consisting of long documents, our joint model outperforms the strongest baseline UKERank by 3.48%, 3.69% and 4.84% in terms of F1@5, F1@10 and F1@15, respectively. We also conduct qualitative experiments to validate the effectiveness of our model components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.