Abstract
We propose a photonic crystal (PC) structure only by replacing square lattice [Luo et al. (2002) [12]] with triangular lattice to obtain an unrestricted imaging. Equal-frequency contours (EFCs) analysis shows that this triangular lattice two-dimensional PC exhibits an effective isotropic refractive index n eff=−1 at a normalized frequency ω=0.291×2 πc/ a. Imaging quality of this triangular lattice PC slab involving both power intensity and full-width at half-maximum intensity of the image is studied using the finite-difference time-domain (FDTD) simulation. In order to achieve a high-quality image, an appropriate surface termination is chosen. In addition, by adjusting the surface air-hole radius of the PC slab, the imaging quality can be further improved. Coupled-mode theory analysis shows that the optimized surface termination and the adjusted surface air-hole can excite two kinds of surface modes that can couple with the Bloch wave in the PC. With the help of these surface modes, both the intensity of image and the super-resolution capacity of this triangular lattice PC slab can be improved greatly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.