Abstract

Recently, the trend in inverted hybrid perovskite solar cells (PVSCs) has been to utilize NiOx as hole transport layers. However, the majority of reported solution-processed NiOx films require a high-temperature thermal annealing process, which is unfavorable for large-scale manufacturing and suffers from lack of uniformity. We report, for the first time, e-beam evaporation as a low-temperature vacuum process for the deposition of NiOx hole transport layers for PVSCs. Device characterization shows that efficiency is on par with solution-processed methods, the highest efficiency at 15.4% with no obvious hysteresis. Differences are found to be due to the presence of more Ni3+ in e-beam evaporated NiOx, which are responsible for a lower transmittance but higher conductivity. Most importantly, e-beam-evaporated NiOx-based PVSCs show greater uniformity and reproducibility compared to spin-coated NiOx-based PVSCs. Finally, e-beam-evaporated NiOx has the additional advantage of being produced by a low-temperature deposition process and applicable over large areas. This work, therefore, represents a significant step toward large-area PVSCs, where e-beam evaporation can be used for the low-temperature uniform deposition of charge-transport layers, such as NiOx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.