Abstract
Machine learning classification and regression algorithms were applied to calibrate the localization errors of a time-difference-of-arrival (TDOA)-based acoustic sensor array used for tracking salmon passage through a hydroelectric dam on the Snake River, Washington, USA. The locations of stationary and mobile acoustic tags were first tracked using the approximate maximum likelihood algorithm. Next, ensembles of classification trees successfully identified and filtered data points with large localization errors. This prefiltering step allowed the creation of a machine-learned regression model function, which decreased the median distance error by 50% for the stationary tracks and by 34% for the mobile tracks. It also extended the previous range of sub-meter localization accuracy from 100 m to 250 m horizontal distance from the dam face (the receivers). Median distance errors in the depth direction were especially decreased, falling from 0.49 m to 0.04 m in the stationary tracks and from 0.38 m to 0.07 m in the mobile tracks. These methods would have application to the calibration of error in any TDOA-based sensor network with a steady environment and array configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.