Abstract

Normalized cross-correlation (NCC) function used in ultrasound strain imaging can get corrupted due to signal decorrelation inducing large displacement errors. Bayesian regularization has been applied in an iterative manner to regularize the NCC function and to reduce estimation variance and peak-hopping errors. However, incorrect choice of the number of iterations can lead to over-regularization errors. In this paper, we propose the use of log compression of regularized NCC function to improve subsample estimation. Performance of parabolic interpolation before and after log compression of the regularized NCC function were compared in numerical simulations of uniform and inclusion phantoms. Significant improvement was achieved with the proposed scheme for lateral estimation results. For example, lateral signal-to-noise ratio (SNR) was 10 dB higher after log compression at 3% strain in a uniform phantom. Lateral contrast-to-noise ratio (CNR) was 1.81 dB higher with proposed method at 3% strain in inclusion phantom. No significant difference was observed in axial estimation due to presence of phase information and high sampling frequency. Our results suggest that this simple approach makes Bayesian regularization robust to over-regularization artifacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.