Abstract
The present study explores the possibility of using Landsat imagery for mapping tropical forest types with relevance to forest ecosystem services. The central part in the classification process is the use of multi-date image data and pre-classification image smoothing. The study argues that multi-date imagery contains information on phenological and canopy structural properties, and shows how the use of multi-date imagery has a significant impact on classification accuracy. Furthermore, the study shows the value of applying small kernel smoothing filters to reduce in-class spectral variability and enhance between-class spectral separability. Making use of these approaches and a maximum likelihood algorithm, six tropical forest types were classified with an overall accuracy of 90.94%, and with individual forest classes mapped with accuracies above 75.19% (user's accuracy) and above 74.17% (producer's accuracy).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.