Abstract
Effective and rapid triaging from primary care into secondary care plays a pivotal role in providing patients with timely treatment and managing increasing demands for healthcare resources. Existing triaging methods from primary care to secondary care are labor-intensive processes that involve manually reviewing referral data from multiple sources and can cause long referral to treatment time. There has been no research using machine learning methods that automatically analyzes heterogeneous data including referral letters to recognize regularities to support the primary to secondary care triage. In this paper, we propose a heterogeneous data-driven hybrid machine learning model including Natural Language Processing (NLP) to improve hospital triage efficiency at the point of triage. The proposed model achieved a precision of 0.83, recall of 0.82, F1-Score of 0.83, accuracy of 0.82, AUC of 0.90 in identifying patients with non-inflammatory conditions (NIC) and inflammatory arthritis (IA) at the point of triage with explainable risk stratifications. Our model is piloted in a real-world trial in a large secondary care hospital in the UK to compare referral accuracy and time saved between our model and clinicians, and evaluate its acceptability by users. Our model achieved precision and recall of 0.83 and 0.81, compared with the precision and recall of 0.80 and 0.78 by clinicians. The research also shows that our model enabled decision support can save clinicians 8 h per week in assessing the referral assessment. This paper is the first study to streamline hospital triage from primary care to secondary care using machine learning.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.