Abstract

Many mammalian gene expression vectors express the transferred genes under the control of the cytomegalovirus (CMV) major immediate-early promoter (MIEP). The human MIEP has been known as the strongest promoter in mammalian cells and utilized widely in mammalian expression systems. There are four NF-κB binding sites (named as κBs) in the human MIEP. In this study, we have constructed multiple mutated MIEPs by changing the natural κBs in the human MIEP into the high-affinity artificial sequences that were in vitro selected by using systematic evolution of ligands by exponential enrichment (SELEX) and predicted by bioinformatics. With various transcriptional activity evaluations, we found three mutated MIEPs with the transcriptional activity higher than the wild-type MIEP, which should be useful and widely applicable in many mammalian transgene expression fields such as gene engineering, gene therapy and gene editing. This study provides a useful approach for promoter engineering in biotechnology. This study also produced a series of mutated MIEPs with various transcriptional activities, which may be used for the fine control of gene expression output in the future synthetic biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.