Abstract

The prediction of the vortex-induced vibration (VIV) of marine risers becomes a critical issue as the offshore exploration and production moving into deepwater and ultra-deepwater regions. In this paper, a time-domain model, based on a forcing algorithm and on high Reynolds number experimental data, was further developed to predict the VIV of rigid and flexible risers. The forcing algorithm was integrated into a global-coordinate-based finite-element program. At each time step, the hydrodynamic forces on a riser, including added mass, lift and drag forces, were calculated for each element based on two non-dimensional state variables—the amplitude ratio and the reduced velocity. The state variables were determined from a zero up-crossing analysis of the time history of the cross-flow displacement. Validation studies were carried out for a full-scale rigid riser segment in a uniform flow and a flexible riser in a stepped current. The predicted motions of the risers were compared with experimental data and the motions predicted by other numerical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.