Abstract

To improve the thermal stability of a resonator fiber optic gyro (R-FOG), a transmission-type polarizing resonator by inserting two in-line polarizers in a polarization-maintaining fiber resonator with twin 90° polarization-axis rotated splices is proposed and experimentally demonstrated. The in-line polarizers attenuate the unwanted resonance by introducing high loss for the unwanted eigenstates of polarization in the resonator. The desired resonance in the resonator can keep excellent stability in a wide temperature range, thus the temperature-related polarization error in the R-FOG is dramatically suppressed. Both our numerical simulation and experimental verification are carried out, which for the first time to our best knowledge demonstrate that the open-loop output of the R-FOG is insensitive to environmental temperature variations. A bias stability below 2°/h in the temperature range of 36.2°C to 33°C is successfully demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call