Abstract

In this work, the characteristics of lossy mode resonances (LMRs) in double-clad fibers where the refractive index (RI) of the second cladding is lower than that of the first cladding are analyzed both numerically and experimentally. In the first place, the LMRs spectra obtained with a 75 nm TiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> thin film are simulated, and it is observed that a thicker second cladding improves the width of the resonances, making them narrower. Then, two experimental cases (no second cladding, and second cladding with thickness of 1.13 µm) are assessed, showing a good agreement with the previous simulations. Finally, an experimental refractometric study is carried out in liquids (surrounding medium refractive index in the 1.34 - 1.40 range) for both fibers, calculating the full width at 1dB (FW <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1dB</sub> ), the sensitivity, and the figure of merit (FOM). The FW <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1dB</sub> is better for the LMR obtained on the fiber with second cladding while the sensitivity is slightly greater for the fiber without second cladding. In the case of the FOM, it is higher for the double-clad fiber as the narrowing of the resonances outweighs the lower sensitivity. These results show that the performance of LMR-based optical fiber sensors can be improved by employing double-clad fibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.