Abstract

Ledeburitic tool steel X210Cr12 was processed by passing through a semi-solid state with subsequent forming on a hydraulic press, thus achieving a fine-grained martensitic matrix, uniformly dispersed fine precipitates, and removal of sharp-edged primary chromium carbides. The hardness value was over 700 HV10. The decomposition of austenite and the promotion of further carbide precipitation were carried out by cryogenic treatment or a combination of cryogenic treatment and tempering. Transmission electron microscopy showed that tempering after cryogenic treatment also led to the precipitation of needle-like M3C carbide, unlike the previous regimes. Furthermore, after the combined treatment, the microstructures showed a significant wear resistance, which was detected both by a waterjet abrasive blast test and a laboratory pin on disk test. Both tests showed a significant increase in wear resistance compared to the initial condition and special high wear resistance steels, such as Hardox 450 and Hardox 600.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call