Abstract

ObjectivesThe present study examined the effects of Na+→K+ ion-exchange on the wear performance of feldspathic veneering porcelain. MethodsBar and disk specimens were prepared using IPS classic as the feldspathic veneering porcelain. After ion-exchange by immersion of the specimens in melted KNO3 at two temperatures for different time-periods, the bars were tested for flexural strength and Vickers surface hardness. The disks were paired with zirconia antagonists and tested with a pin-on-disk tribometer with 10 N for 70☓104 wear cycles in artificial saliva. Wear analysis of the porcelain and zirconia was performed using 3D profilometer and analysed with one-way analysis of variance and Tukey’s post-hoc pairwise comparison procedures. Worn surfaces were examined with scanning electron microscopy. ResultsThe feldspathic veneering porcelain exhibited strong time-dependent wear behaviour, with typical running-in and steady wear stages. Ion-exchange treatments at 380 °C and 440 °C both enhanced the mechanical properties, decreased the wear rates of running-in wear and steady wear. The wear performance of porcelain treated by ion-exchange at lower temperature (380 °C) was improved significantly, especially reducing the wear rate of the running-in stage. ConclusionA thicker ion-exchange layer with less stress relaxation may be obtained by ion-exchange at lower exchange temperature for a long processing time. Such a protocol improves the wear performance of the porcelain effectively. Clinical significanceRestorations with veneering porcelain may fail prematurely due to excessive wear. It important to improve the wear performance of the porcelain. Ion-exchange has the potential to strengthen dental veneering porcelain. Understanding the effect of ion-exchange on the wear performance of porcelain provides insight improving the wear performance of these restorations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call