Abstract

WC-CoCr-based high velocity oxy fuel (HVOF) coatings are being used for several components which are prone to severe erosion or abrasion. In this study, the HVOF coating was applied by liquid fuel-based equipment. These coated samples were subjected to surface grinding of various depths (100, 200, and 300 μm). Hardness test after surface grinding showed that the coating hardness increased by 33% after grinding to a depth of 200 μm (1472 Hv). The residual stress after different depths of grinding was measured using x-ray diffraction. It showed that the compressive residual stress of coating increased with grinding. Increase in hardness of the coating (after grinding) is believed to be due to the increase in compressive residual stress. The abrasive wear resistance increased after grinding to a depth of 100 μm thickness and remained constant during successive grinding. In contrast, the erosive wear resistance increased the most when the grinding thickness was 200 μm. It is concluded that the surface grinding of coatings helps in increasing abrasive and erosive wear resistance. The increase in microhardness of the coating is believed to be the reason for high wear resistance. SEM studies of worn out surface show carbide grain pull out due to removal of softer phase, i.e. cobalt and chromium, and is followed by tungsten carbide grain pull out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.