Abstract

Treatment of the surface of an alumina insulator with coatings incorporating varying amounts of Cr, Mn, and Ti can increase the vacuum voltage holdoff capability of the insulator significantly (up to 25%). During processing (quasimetallizing) the coating penetrates into the alumina, making it insensitive to mechanical damage. This quasimetallizing treatment is also compatible with subsequent metallizing and brazing of the alumina insulator. A 7/1 Mn/Ti mix performed very well, being found to be as effective on a 94% A12O3 alumina as on the previously investigated 95% A12O3, 1% Cr2O3 alumina. Mixes of 6/1/1 Mn/Ti/Cr and 6/3 Mn/Cr performed about as well as the 7/1 Mn/Ti mix, but no better. Quasimetallizing with pure Mn improved the voltage holdoff capability of alumina by about half as much as when using the 7/1 Mn/Ti mix. Mixes with relatively high titanium content (4/3 Mn/Ti and 3/3/2 Mn/Ti/Cr) significantly increased the voltage holdoff capability of the alumina, but unfortunately were much more prone than the 7/1 Mn/Ti mix (or plain alumina) to suffer severe and permanent damage when a breakdown did occur. Quasimetallizing with appropriate formulations. has been shown to change the surface characteristics of alumina in two ways: (1) it decreases the surface resistivity of the alumina, and (2) it decreases the secondary electron emission yield of the alumina. Each change improves the voltage holdoff characteristics of the alumina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.