Abstract

Background data furnishing a two-sample Mendelian randomization (MR) study are often visualized with the aid of a scatter plot, in which single-nucleotide polymorphism (SNP)-outcome associations are plotted against the SNP-exposure associations to provide an immediate picture of the causal-effect estimate for each individual variant. It is also convenient to overlay the standard inverse-variance weighted (IVW) estimate of causal effect as a fitted slope, to see whether an individual SNP provides evidence that supports, or conflicts with, the overall consensus. Unfortunately, the traditional scatter plot is not the most appropriate means to achieve this aim whenever SNP-outcome associations are estimated with varying degrees of precision and this is reflected in the analysis. Methods We propose instead to use a small modification of the scatter plot-the Galbraith Radial plot-for the presentation of data and results from an MR study, which enjoys many advantages over the original method. On a practical level, it removes the need to recode the genetic data and enables a more straightforward detection of outliers and influential data points. Its use extends beyond the purely aesthetic, however, to suggest a more general modelling framework to operate within when conducting an MR study, including a new form of MR-Egger regression. Results We illustrate the methods using data from a two-sample MR study to probe the causal effect of systolic blood pressure on coronary heart disease risk, allowing for the possible effects of pleiotropy. The Radial plot is shown to aid the detection of a single outlying variant that is responsible for large differences between IVW and MR-Egger regression estimates. Several additional plots are also proposed for informative data visualization. Conclusions The Radial plot should be considered in place of the scatter plot for visualizing, analysing and interpreting data from a two-sample summary data MR study. Software is provided to help facilitate its use.

Highlights

  • Summary data furnishing a two-sample Mendelian randomization study are often visualized with the aid of a scatter plot, in which single nucleotide polymorphism (SNP)-outcome associations are plotted against the SNP-exposure associations to provide an immediate picture of the causal effect estimate for each individual variant

  • Will continue to be refined and extended to incorporate further features and analyses. It has long been appreciated in the general meta-analysis context that the radial plot has many desirable characteristics over the traditional scatter plot, especially in the detection of outlying studies and small study bias

  • Given its intimate connection with meta-analysis, we propose that the radial plot should be given a more central role in two-sample summary data Mendelian randomization (MR) studies

Read more

Summary

Introduction

Summary data furnishing a two-sample Mendelian randomization study are often visualized with the aid of a scatter plot, in which single nucleotide polymorphism (SNP)-outcome associations are plotted against the SNP-exposure associations to provide an immediate picture of the causal effect estimate for each individual variant. Ratio estimates are combined into an overall estimate of causal effect using an inverse variance weighted (IVW) fixed effect meta-analysis. This is referred to as the IVW estimate and the general framework as two-sample summary data MR [2, 3].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call