Abstract

An improved variational path integral approach is developed and applied to the quantum double-well potential, in which part of the quartic term of the potential is included in the trial action. The expression of the effective classical potential (ECP) under a non-Gaussian expectation is obtained. Here the frequency and fourth-order derivative of the potential are treated as two variational parameters, determined by the minimization of the ECP at each point. We calculate the ECP, the free energy and the level splitting of a symmetrical double-well potential. It is shown that the present results are better than those of the Feynman–Kleinert Gaussian variational method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.