Abstract

Various studies on wood adhesives filled with conductive fillers for future application to structural monitoring showed a piezoresistive (resistance change with strain) response of the adhesive bond lines that is measurable under direct current. The results also showed a relatively high signal noise with low sensitivity. Using impedance spectroscopy as a measurement technique, the improvements in frequency-dependent piezoresistivity over DC (Direct Current) resistography of multifunctional bonded wood were studied. Beech specimens were bonded by one-component polyurethane prepolymer (1C-PUR) filled with carbon black and tested under shear load. The quality of the piezoresistive properties was described by calculating the signal-to-noise ratio (SNR) of the measured signal. A setup-specific frequency band with optimized SNR between 100 kHz and 1 MHz could be derived from the measurements. Several frequencies showed a signal with higher quality resulting in a higher SNR. Regardless of the variations in impedance spectra for all specimens, this frequency band provided several frequencies with improved signal quality. These frequencies give a more reliable signal with lower noise compared to the signal from DC resistography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.