Abstract
Depth-sensing spherical indentation tests (SITs) have been widely used in tensile property calculations, but the accuracy and reproducibility of calculations may be significantly influenced by displacement measurement errors. Taking two representative tensile property calculation methods as examples, namely the analytical and numerical methods, the rationale as to why accurate and reproducible tensile property calculations cannot be expected from the depth-sensing SITs was discussed in detail. Subsequently, the proportional limit σ0 calculation from plastic zone radius rp measurements, which was analytically developed in the expanding cavity model (ECM) and experimentally measured by digital image correlation (DIC), was introduced to enhance the accuracy and reproducibility of the two representative methods. Principles for setting the strain threshold εth were established, and factors influencing the σ0 calculation from rp measurements were investigated through the optical system, the friction condition, the hardening behaviors of specimen materials, and the indentation depth. Through finite element calculations, it was proven that tensile property calculations at the existence of displacement measurement errors, particularly the constant error from the origin correction, can be significantly improved with the introduction of rp measurements. Similar findings were also observed in experiments on four metals that exhibited different hardening behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Strain Analysis for Engineering Design
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.