Abstract

Quantum teleportation is designed to send an unknown quantum state between two parties. In the perspective of remote quantum metrology, one may be interested in teleporting the information that is encoded by physical parameters synthesized by quantum Fisher information (QFI). However, the teleported QFI is often destroyed by the unavoidable interaction between the system and the environment. Here, we propose two schemes to improve the teleportation of QFI in the non-Markovian environment. One is to control the quantum system through the operations of weak measurement (WM) and corresponding quantum measurement reversal (QMR). The other is to modify the quantum system based on the monitoring result of the environment (i.e., environment-assisted measurement, EAM). It is found that, in the non-Markovian environment, these two schemes can improve the teleportation of QFI. By selecting the appropriate strengths of WM and QMR, the environment noise can be completely eliminated and the initial QFI is perfectly teleported. A comprehensive comparison shows that the second scheme not only has a higher probability of success than the first one, but also has a significant improvement of the teleported QFI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call