Abstract
To investigate whether processing visual field (VF) measurements using a variational autoencoder (VAE) improves the structure-function relationship in glaucoma. Cross-sectional study. The training data consisted of 82 433 VF measurements from 16 836 eyes. The testing dataset consisted of 117 eyes of 75 patients with open-angle glaucoma. A VAE model to reconstruct the threshold of VF was developed using the training dataset. OCT and VF (Humphrey Field Analyzer 24-2, Swedish interactive threshold algorithm standard) measurements were carried out for all eyes in the testing dataset. Visual fields in the testing dataset then were reconstructed using the trained VAE. The structure-function relationship between the circumpapillary retinal nerve fiber layer (cpRNFL) thickness and VF sensitivity was investigated in each of twelve 30° segments of the optic disc (3 nasal sectors were merged). Similarly, the structure-function relationship was investigated using the VAE-reconstructed VF. Structure-function relationship. The corrected Akaike information criterion values with threshold were found to be smaller than the threshold reconstructed with the VAE (thresholdVAE) in 9 of 10 sectors. A significant relationship was found between threshold and cpRNFL thickness in 6 of 10 sectors, whereas it was significant in 9 of 10 sectors with thresholdVAE. Applying VAE to VF data results in an improved structure-function relationship.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.