Abstract

The strength of traditional Al-Mg alloys is relatively low because it mainly relies on solid solution strengthening. Adding a third component to form precipitation can improve their strength, but it usually leads to high-stress corrosion cracking (SCC) sensitivity due to the formation of high-density precipitates at grain boundaries (GBs). So far, it is still challenging to improve the strength of Al-Mg alloys without reducing SCC resistance. Herein, a nanostructured Al-5Mg-3 Zn alloy with a good yield strength of 336 MPa and good elongation was successfully produced. By dynamic plastic deformation and appropriate annealing treatment, near-equiaxed nanograins were introduced in the nanostructured Al-5Mg-3 Zn alloy with a high proportion (71%) of the low-angle grain boundary. TEM statistical investigations show that the precipitation of active T' phase at GBs has been greatly suppressed in the nanostructured Al-5Mg-3 Zn alloy at sensitized conditions, and the area fraction of GB precipitates is reduced from 72% to 21%, which significantly decreases the SCC susceptibility. This study provides guidance for developing advanced Al-Mg alloy with high SCC resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.