Abstract

AbstractNumerical instability may occur when simulating high Reynolds number flows by the lattice Boltzmann method (LBM). The multiple-relaxation-time (MRT) model of the LBM can improve the accuracy and stability, but is still subject to numerical instability when simulating flows with large single-grid Reynolds number (Reynolds number/grid number). The viscosity counteracting approach proposed recently is a method of enhancing the stability of the LBM. However, its effectiveness was only verified in the single-relaxation-time model of the LBM (SRT-LBM). This paper aims to propose the viscosity counteracting approach for the multiple-relaxation-time model (MRT-LBM) and analyze its numerical characteristics. The verification is conducted by simulating some benchmark cases: the two-dimensional (2D) lid-driven cavity flow, Poiseuille flow, Taylor-Green vortex flow and Couette flow, and three-dimensional (3D) rectangular jet. Qualitative and Quantitative comparisons show that the viscosity counteracting approach for the MRT-LBM has better accuracy and stability than that for the SRT-LBM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.