Abstract

This study explores the optimization of spray drying conditions for fermented acerola juice powder, focusing on nutrient retention and probiotic viability. Acerola, a fruit high in vitamin C and phenolics, was fermented under varying conditions to support the growth of Lactobacillus gasseri. The fermentation of acerola juice was conducted at pH levels of 3.2(in natura), 5.0, and 7.0 to promote optimal bacterial growth. Spray drying was then performed at inlet temperatures of 120°C, 140°C, and 160°C, using varying concentrations of maltodextrin and gelatin as encapsulants. The powders were analyzed for vitamin C, phenolic content, and Lactobacillus gasseri cell concentration. Optimal bacterial growth occurred at pH 7.0. The spray drying process showed that lower temperatures (120°C) favored higher vitamin C (up to 6.2 mg/g) and phenolic retention (up to 59.9 mg/g), while higher temperatures (160°C) enhanced probiotic survival (up to 8.3 × 108 CFU/g). Hydrocolloids like maltodextrin and gelatin were crucial in enhancing nutrient and probiotic stability, showcasing their importance in optimizing spray-dried functional food formulations. Tailoring fermentation and spray drying conditions is crucial in producing functional fruit powders with high nutritional and probiotic value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call