Abstract

Iron-based aqueous batteries, such as the iron-air and nickel-iron chemistries, are limited by passivation and hydrogen evolution at the iron anode, especially at high current densities. In this paper, strategies to minimise these issues are investigated with iron electrodes composed of 20–50 nm Fe2O3 nanoparticles produced by the Adams and Oxalate methods. The strategies include ball milling the Fe2O3 with Ketjenblack carbon to improve conductivity, addition of bismuth sulphide to the electrode and 1-octanethiol to the electrolyte, and addition of potassium carbonate as a pore-forming agent. The ratio of Fe/C in the electrode and the 1-octanethiol additive have the greatest impact on the electrode capacity. The Fe/C ratio should be below 2.0 to ensure conductivity of the discharged electrode. The presence of 1-octanethiol can protect the electrodes from passivation during discharge; at very high 2C discharge rates adding 1-octanethiol increases the electrode specific capacity from 17 to 171 mAh/gFe. The synthesis method and use of pore former do not have a significant effect on the capacity. In all electrodes, the Fe2O3 nanoparticles are in the same crystalline phase after cycling and do not undergo significant crystal growth and passivation, demonstrating the stability and suitability of these materials for iron-based batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.