Abstract

Visualizing data generated from molecular dynamics simulations can be difficult, particularly when there can be thousands to millions of trajectory frames. The creation of a 3D grid of atomic density (i.e. a volumetric map) is one way to easily view the long-time average behavior of a system. One way to generate volumetric maps is by approximating each atom with a Gaussian function centered on that atom and spread over neighboring grid cells. However the calculation of the Gaussian function requires evaluation of the exponential function, which is computationally costly. Here we report on speeding up the calculation of volumetric maps from molecular dynamics trajectory data by replacing the expensive exponential function evaluation with an approximation using interpolating cubic splines. We also discuss the errors involved in this approximation, and recommend settings for volumetric map creation based on this.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.