Abstract

We experimentally engineer a high-spectral-purity single-photon source using a single-interferometer-coupled silicon microring. By the reconfiguration of the interferometer, different coupling conditions can be obtained, corresponding to different quality factors for the pump and signal/idler. The ratio between the quality factor of the pump and signal/idler ranges from 0.29 to 2.57. By constructing the signal–idler joint spectral intensity, we intuitively demonstrate the spectral correlation of the signal and idler. As the ratio between the quality factor of the pump and signal/idler increases, the spectral correlation of the signal and idler decreases, i.e., the spectral purity of the signal/idler photons increases. Furthermore, time-integrated second-order correlation of the signal photons is measured, giving a value up to 94.95 ± 3.46%. Such high-spectral-purity photons will improve the visibility of quantum interference and facilitate the development of on-chip quantum information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call