Abstract
Aggregation of solid particles in the drilling fluid has adverse effects on the drilling performance, including blocking drilling pipe, reducing fluid lubrication, and the blowout action. The purpose of this study was to prepare a solution for breaking the adhesion forces between the suspended solids and drilling fluid molecules. To investigate the effect of the ultrasonic waves on the separation of solid particles from reversed emulsion fluid, in vitro studies were conducted. Drilling mud was prepared in the form of different samples and the samples were then irradiated with ultrasonic waves for 2, 5, and 10 min and the intensities of 50, 100, and 150 W/m2. To evaluate the stability of the emulsions and the efficiency of the separation process, caliper (volumetric) and density measurement methods were utilized. The results revealed increased time and intensity of the ultrasonic radiation separates the phases and fine particles from the emulsion, and also increased the stability of reversed emulsion. The increased radiation time and intensity did not have any effect on the drilling mud and only delayed the optimal operation time and energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.