Abstract

The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends such as multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the parallel execution of graphs that are generated using the Barnes–Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery by using the advanced semantics for exascale computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call