Abstract

Aiming at automatic verification and analysis techniques for hybrid discrete-continuous systems, we present a novel combination of enclosure methods for ordinary differential equations (ODEs) with the iSAT solver for large Boolean combinations of arithmetic constraints. Improving on our previous work, the contribution of this paper lies in combining iSAT with VNODE-LP, as a state-of-the-art interval solver for ODEs, and with bracketing systems, which exploit monotonicity properties allowing to find enclosures for problems that VNODE-LP alone cannot enclose tightly. We apply the combined iSAT-ODE solver to the analysis of a variety of non-linear hybrid systems by solving predicative encodings of reachability properties and of an inductive stability argument, and evaluate the impact of the different enclosure methods, decision heuristics and their combination. Our experiments include classic benchmarks from the literature, as well as a newly-designed conveyor belt system that combines hybrid behavior of parallel components, a slip-stick friction model with non-linear dynamics and flow invariants and several dimensions of parameterization. In the paper, we also present and evaluate an extension of VNODE-LP tailored to its use as a deduction mechanism within iSAT-ODE, to allow fast re-evaluations of enclosures over arbitrary subranges of the analyzed time span.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.