Abstract
Roller screens play a decisive character in the efficiency of pelletizing circuits and induration furnaces. Unlike vibrating screens, there have been no studies on roller screens to determine their capacity and dimensions. Most studies have utilized the discrete element method (DEM) simulation to assess roller screen performance by employing a spherical shape and the Hertz-Mindlin elastic model. However, this approach is unsuitable due to green pellets’ non-spherical shape and elastic–plastic properties. This study introduces the incorporation of the actual shape of green pellets and a hysteretic spring elastoplastic contact model. In this research work, a novel design of rolls with a grooved surface was recommended for the first time, resulting in a Total Screening Efficiency (TSE) of 96.4% compared to 87.1% for rolls with a smooth surface. Additionally, while exploring the impact of the decks number on the roller screen, a new design, known as the banana roller screen, was introduced. Under similar conditions, the TSE increased by 1.22% compared to the general roller screen type. It was also found that the roller screen’s capacity is directly related to the diameter, speed of rotation, and the number of rolls, while it has a reverse relationship with TSE and deck angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.