Abstract

We presented an experimental method called FLOUR-seq, which combines BD Rhapsody and nanopore sequencing to detect the RNA lifecycle (including nascent, mature, and degrading RNAs) in cells. Additionally, we updated our HIT-scISOseq V2 to discover a more accurate RNA lifecycle using 10x Chromium and Pacbio sequencing. Most importantly, to explore how single-cell full-length RNA sequencing technologies could help improve the RNA velocity approach, we introduced a new algorithm called 'Region Velocity' to more accurately configure cellular RNA velocity. We applied this algorithm to study spermiogenesis and compared the performance of FLOUR-seq with Pacbio-based HIT-scISOseq V2. Our findings demonstrated that 'Region Velocity' is more suitable for analyzing single-cell full-length RNA data than traditional RNA velocity approaches. These novel methods could be useful for researchers looking to discover full-length RNAs in single cells and comprehensively monitor RNA lifecycle in cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.