Abstract

In this work, a series of reactive copolymers of glycidyl methacrylate (G), styrene (S) and acrylonitrile (AN), were synthesized through reversible addition-fragmentation chain transfer polymerization and evaluated as macromolecular chain extenders in reactive extrusion of recycled poly(ethylene terephthalate) (rPET). The results obtained indicate that the addition of the reactive copolymers as chain extenders modifies the chain conformation in rPET causing low crystallization rate and low crystallinity. The physical and rheological properties (melt flow and intrinsic viscosity) of chain-extended rPET improved, rendering better processability. rPET modified with polymeric chain extenders shows improved rheological properties (complex viscosity, storage and loss modulus) and also displays higher elongation at break and impact properties as the GMA content in the chain extenders increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.