Abstract
The production of bioethanol by the conversion of lignocellulosic waste has attracted much interest in recent years because of its low cost and great potential availability. However, the high cost of the enzyme required for this conversion is often considered to be the major bottleneck in the commercial lignocellulosic ethanol industry. In this work, the hydrolysis of rice straw by free and entrapped lignocellulolytic enzymes (cellulase, xylanase and laccase) was carried out at pH 5.5 and 37°C. The hydrolysis of rice straw by enzymes entrapped in a membrane produced a higher monosaccharide content: 601.05 mg/g rice straw for entrapped enzymes vs. 465.46 mg/g rice straw for free enzymes. This study has shown that enzyme entrapment is an important technique for the efficient use and reuse of enzymes in industrial applications and also for the rapid separation of saccharide products from the reaction medium, thus improving the remaining enzymatic activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.