Abstract

AbstractSatellite swarm networks have occupied a prominent position in many modern applications due to their low cost, simplicity of design, and flexibility. Reliability is an influential factor in the design of satellite networks with different structures. Usually, small satellites are based on COST components, which may reduce continues operability due to the lack of using backup system on board the sagecraft. Any failure in one subsystem means a complete loss of the function and data stored in this subsystem; hence the need for a reliable and applicable solution for this matter is a crucial topic. Using the redundancy strategy in satellite swarm networks increases reliability and availability. Blockchain is characterized by using a distributed ledger which enables the database to be replicated across nodes in the network and results in increasing transparency, security, and trust. This paper suggests adoption of blockchain technology in distributed multi-satellite mission swarm networks to provide a high level of reliability and availability of the entire system; the blockchain is usually used to secure system transactions in multilayer approach by storage of the key parameters in more than one node; here we suggest the adoption of this approach not only to secure satellite network transaction, but also to increase system reliability so that failure of one node can be recovered by other nodes. We compared this approach with similar traditional networks that do not use blockchain. The results show a higher reliability efficiency of 95.3% for applying blockchain technology compared to 64.3% without the use of blockchain, as well as a higher availability of 99% compared to 91%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.