Abstract

The fuel loading pattern optimization is an important process in the refueling design of a nuclear reactor core. Also the analysis of reactor core performance during the operation cycle can be a significant step in the core loading pattern optimization (LPO). In this work, for the first time, a new method i.e. cuckoo search algorithm (CS) has been applied to the fuel loading pattern design of Bushehr WWER-1000 core. In this regard, two objectives have been chosen for finding the best configuration including the improvement of operation cycle length associated with flattening the radial power distribution of fuel assemblies. The core pattern optimization has been performed by coupling the CS algorithm to thermal-neutronic codes including PARCS v2.7, COBRA-EN and WIMSD-5B for earning desired parameters along the operation cycle. The calculations have been done for the beginning of cycle (BOC) to the end of cycle (EOC) states. According to numerical results, the longer operation cycle for the semi-optimized loading pattern has been achieved along with less power peaking factor (PPF) in comparison to the original core pattern of Bushehr WWER-1000. Gained results confirm the efficient and suitable performance of the developed program and also the introduced CS method in the LPO of a nuclear WWER type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call