Abstract

The recall performance of a well-established canonical microcircuit model of the hippocampus, a region of the mammalian brain that acts as a short-term memory, was systematically evaluated. All model cells were simplified compartmental models with complex ion channel dynamics. In addition to excitatory cells (pyramidal cells), four types of inhibitory cells were present: axo-axonic (axonic inhibition), basket (somatic inhibition), bistratified cells (proximal dendritic inhibition) and oriens lacunosum-moleculare (distal dendritic inhibition) cells. All cells’ firing was timed to an external theta rhythm paced into the model by external reciprocally oscillating inhibitory inputs originating from the medial septum. Excitatory input to the model originated from the region CA3 of the hippocampus and provided context and timing information for retrieval of previously stored memory patterns. Model mean recall quality was tested as the number of stored memory patterns was increased against selectively modulated feedforward and feedback excitatory and inhibitory pathways. From all modulated pathways, simulations showed recall performance was best when feedforward inhibition from bistratified cells to pyramidal cell dendrites is dynamically increased as stored memory patterns is increased with or without increased pyramidal cell feedback excitation to bistratified cells. The study furthers our understanding of how memories are retrieved by a brain microcircuit. The findings provide fundamental insights into the inner workings of learning and memory in the brain, which may lead to potential strategies for treatments in memory-related disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.