Abstract

The application of reclaimed water has been recognized as the key approach for alleviating water scarcity, while its low quality, such as high nitrogen content, still makes people worry about the corresponding ecological risk. Herein, we investigated the feasibility of removing residual nitrate from reclaimed water by applying Spirulina platensis. It is found that 15 mg/L total nitrogen could be decreased to 1.8 mg/L in 5 days, equaling 88.1 % removal efficiency under the optimized conditions. The deficient phosphorus at 0.5-1.0 mg/L was rapidly eliminated but was already sufficient to support nitrate removal by S. platensis. The produced ammonia is generally below 0.2 mg/L, which is much lower than the standard limit of 5 mg/L. In such a nutrient deficiency condition, S. platensis could maintain biomass growth well via photosynthesis. The variation of pigments, including chlorophyll a and carotenoids, suggested a certain degree of influences of illumination intensity and phosphorus starvation on microalgae. The background cations Cu2+ and Zn2+ exhibited significant inhibition on biomass growth and nitrate removal; thus, more attention needs to be paid to the further application of microalgae in reclaimed water. Our results demonstrated that cultivation of S. platensis should be a very promising solution to improve the quality of reclaimed water by efficiently removing nitrate and producing biomass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call