Abstract

Online reviews are often accessed by users deciding to buy a product, see a movie, or go to a restaurant. However, most reviews are written in a free-text format, usually with very scant structured metadata information and are therefore difficult for computers to understand, analyze, and aggregate. Users then face the daunting task of accessing and reading a large quantity of reviews to discover potentially useful information. We identified topical and sentiment information from free-form text reviews, and use this knowledge to improve user experience in accessing reviews. Specifically, we focus on improving recommendation accuracy in a restaurant review scenario. We propose methods to derive a text-based rating from the body of the reviews. We then group similar users together using soft clustering techniques based on the topics and sentiments that appear in the reviews. Our results show that using textual information results in better review score predictions than those derived from the coarse numerical star ratings given by the users. In addition, we use our techniques to make fine-grained predictions of user sentiments towards the individual topics covered in reviews with good accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.