Abstract
Oriented sample solid-state NMR (OS-ssNMR) spectroscopy is a powerful technique to determine the topology of membrane proteins in oriented lipid bilayers. Separated local field (SLF) experiments are central to this technique as they provide first-order orientational restraints, i.e., dipolar couplings and anisotropic chemical shifts. Despite the use of low-E (or E-free) probes, the heat generated during the execution of 2D and 3D SLF pulse sequences causes sizeable line-shape distortions. Here, we propose a new heat-compensated SE-SAMPI4 (hcSE-SAMPI4) pulse sequence that holds the temperature constant for the duration of the experiment. This modification of the SE-SAMPI4 results in sharper and more intense resonances without line-shape distortions. The spectral improvements are even more apparent when paramagnetic relaxation agents are used to speed up data collection. We tested the hcSE-SAMPI4 pulse sequence on a single-span membrane protein, sarcolipin (SLN), reconstituted in magnetically aligned lipid bicelles. In addition to eliminating peak distortions, the hcSE-SAMPI4 experiment increased the average signal-to-noise ratio by 20% with respect to the original SE-SAMPI4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.