Abstract

Background:Diffusion-weighted imaging (DWI) is useful for detecting and characterizing liver lesions but is sensitive to organ motion artifact, especially in the left lobe.Purpose:To assess the signal intensity (SI) loss in the left hepatic lobe on DWI depending on motion-proving gradient (MPG) pulse direction (preliminary study) and to evaluate the usefulness of modified signal averaging to reduce the SI loss on DWI (application study).Methods:About 48 (preliminary) and 35 (application) patients were included. In the preliminary study, DWI with four different MPG directions, only a single MPG pulse direction (x-, y-, or z-axis) and all three directions combined (standard DWI), were reconstructed from the original data. In the application study, we examined the usefulness of the weighted averaging number of excitations (wNEX) method, in which a larger weighting factor is applied to the higher signal in pixel-by-pixel NEX signal averaging by comparing four reconstruction methods. We assumed that true signals would be the same in both lobes. The SI and apparent diffusion coefficient (ADC) ratios for the left versus right lobe were calculated by dividing the SI/ADC of the right lobe by that of the left lobe.Results:In the preliminary study, the SI ratio was significantly lower on DWI using only the x-axis but was significantly higher on DWI using only the z-axis (both P < 0.0001) when compared with standard DWI. In the application study, the SI (mean, 1.15–1.17) and ADC (0.90–0.92) ratios on DWI with wNEX were closer to 1.0 than those on standard DWI (SI ratio, 1.32–1.38; ADC ratio 0.80–0.81); the differences were significant (all P < 0.0001).Conclusion:The MPG pulse along the z-axis caused signal loss in the left hepatic lobe. The wNEX reconstruction method effectively reduced signal loss in the left lobe on DWI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call