Abstract
<p>Cloud contamination is a serious obstacle for the application of Landsat data. Thick clouds can completely block land surface information and lead to missing values. The reconstruction of missing values in a Landsat cloud image requires the cloud and cloud shadow mask. In this study, we raised the issue that the quality of the quality assessment (QA) band in current Landsat products cannot meet the requirement of thick-cloud removal. To address this issue, we developed a new method (called Auto-PCP) to preprocess the original QA band, with the ultimate objective to improve the performance of cloud removal on Landsat cloud images. We tested the new method at four test sites and compared cloud-removed images generated by using three different QA bands, including the original QA band, the modified QA band by a dilation of two pixels around cloud and cloud shadow edges, and the QA band processed by Auto-PCP (“QA_Auto-PCP”). Experimental results, from both actual and simulated Landsat cloud images, show that QA_Auto-PCP achieved the best visual assessment for the cloud-removed images, and had the smallest RMSE values and the largest Structure SIMilarity index (SSIM) values. The improvement for the performance of cloud removal by QA_Auto-PCP is because the new method substantially decreases omission errors of clouds and shadows in the original QA band, but meanwhile does not increase commission errors. Moreover, Auto-PCP is easy to implement and uses the same data as cloud removal without additional image collections. We expect that Auto-PCP can further popularize cloud removal and advance the application of Landsat data.     </p><p><strong> </strong></p><p><strong>Keywords: </strong>Cloud detection, Cloud shadows, Cloud simulation, Cloud removal, MODTRAN</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.