Abstract

Poly [2,2′-(m-pyrazolidene)-5,5′-bibenzimidazole] (PPBI) was synthesized from pyrazole-3,5-dicarboxylic acid and 3,3′,4,4′-tetraaminobiphenyle (TAB) through polycondensation reaction in polyphosphoric acid (PPA) as reaction solvent. And polymer-grafted SiO2 and TiO2 nanoparticles were prepared through radical polymerization of 1-vinylimidazole and sulfonated vinylbenzene on the surface-vinylated nanoparticles. The polymer-grafted SiO2 and TiO2 nanoparticles were utilized as a functional additive to prepare PPBI/polymer-grafted SiO2 and TiO2 nanocomposite membranes. Imidazole and sulfonated vinylbenzene groups on the surface of modified nanoparticles forming linkages with PPBI chains, improved the compatibility between PPBI and nanoparticles, and enhanced the mechanical strength of the prepared nanocomposite membranes. The prepared nanocomposite membranes showed higher water uptake and acid doping levels comparing to PPBI. Also, after acid doping with phosphoric acid, nanocomposite membranes exhibited enhanced proton conductivity in comparison to the pristine PPBI and PPBI/un-modified SiO2 and TiO2 nanocomposite membranes. The enhancement in proton conductivity of nanocomposite membranes resulted from modified SiO2 nanoparticles showed higher conductivity than modified TiO2 nanoparticles. The above results indicated that the PPBI/modified SiO2 and TiO2 nanocomposite membranes could be utilized as proton exchange membranes for medium temperature fuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call