Abstract
Protein inference is one of the crucial steps in proteome characterization using a bottom-up approach. Multiple algorithms to solve the problem are focused on extensive analysis of shared peptides identified from fragmentation mass spectra (MS/MS). However, many protein homologues with a similar amino acid sequence typically have identical lists of identified peptides due to the problem of proteome undersampling in a bottom-up approach and, thus, cannot be distinguished by existing protein inference methods. Here, we propose the use of peptide feature information extracted from precursor mass spectra to assist in identification of proteins otherwise indistinguishable from MS/MS. The proposed method was integrated with a protein inference algorithm based on the parsimony principle and built-in in the postsearch utility Scavager. The results demonstrate increasing accuracy and efficiency of homologous protein identifications for the well characterized data sets including the one with known protein sequences from iPRG-2016 study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.