Abstract

Gibberellic acid (GA3), produced industrially by Fusarium fujikuroi, stands as a crucial plant growth regulator extensively employed in the agriculture filed while limited understanding of the global metabolic network hinders researchers from conducting rapid targeted modifications. In this study, a small-molecule compounds-based targeting technology was developed to increase GA3 production. Firstly, various small molecules were used to target key nodes of different pathways and the result displayed that supplement of terbinafine improved significantly GA3 accumulation, which reached to 1.08 g/L. Subsequently, lipid and squalene biosynthesis pathway were identified as the key pathways influencing GA3 biosynthesis by transcriptomic analysis. Thus, the strategies including in vivo metabolic engineering modification and in vitro supplementation of lipid substrates were adopted, both contributed to an enhanced GA3 yield. Finally, the engineered strain demonstrated the ability to achieve a GA3 yield of 3.24 g/L in 5 L bioreactor when utilizing WCO as carbon source and feed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.