Abstract
Reliable drought prediction should be preceded to prevent damage from potential droughts. In this context, this study developed a hydrological drought prediction method, namely ensemble drought prediction (EDP) to reflect drought-related information under the ensemble streamflow prediction framework. After generating an ensemble of standardized runoff index by converting the ensemble of generated streamflow, the results were adopted as the prior distribution. Then, precipitation forecast and soil moisture were used to update the prior EDP. The EDP + A model included the precipitation forecast with the PDF-ratio method, and the observed soil moisture index was reflected in the former EDP and EDP + A via Bayes’ theorem, resulting in the EDP + S and EDP + AS models. Eight basins in Korea with more than 30 years of observation data were applied with the proposed methodology. As a result, the overall performance of the four EDP models yielded improved results than the climatological prediction. Moreover, reflecting soil moisture yielded improved evaluation metrics during short-term drought predictions, and in basins with larger drainage areas. Finally, the methodology presented in this study was more effective during periods with less intertemporal variabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.