Abstract

Fast and predictive simulation tools are prerequisites for pursuing simulation based engine control development. A particularly attractive tradeoff between speed and fidelity is achieved with a co-simulation approach that marries a commercial gas dynamic code WAVE™ with an in-house quasi-dimensional combustion model. Gas dynamics are critical for predicting the effect of wave action in intake and exhaust systems, while the quasi-D turbulent flame entrainment model provides sensitivity to variations of composition and turbulence in the cylinder. This paper proposes a calibration procedure for such a tool that maximizes its range of validity and therefore achieves a fully predictive combustion model for the analysis of a high degree of freedom (HDOF) engines. Inclusion of a charge motion control device in the intake runner presented a particular challenge, since anything altering the flow upstream of the intake valve remains “invisible” to the zero-D turbulence model applied to the cylinder control volume. The solution is based on the use of turbulence multiplier and scheduling of its value. Consequently, proposed calibration procedure considers two scalar variables (dissipation constant Cβ and turbulence multiplier CM), and the refinements of flame front area maps to capture details of the spark-plug design, i.e. the actual distance between the spark and the surface of the cylinder head. The procedure is demonstrated using an SI engine system with dual-independent cam phasing and charge motion control valves (CMCV) in the intake runner. A limited number of iterations led to convergence, thanks to a small number of adjustable constants. After calibrating constants at the reference operating point, the predictions are validated for a range of engine speeds, loads and residual fractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.