Abstract

In this work we address the problem of joint prosodic and lexical behavioral annotation for addiction counseling. We expand on past work that employed Recurrent Neural Networks (RNNs) on multimodal features by grouping and classifying subsets of classes. We propose two implementations: One is hierarchical classification, which uses the behavior confusion matrix to cluster similar classes and makes the prediction based on a tree structure. The second is a graph-based method which uses the result of the original classification just to find a certain subset of the most probable candidate classes, where the candidate sets of different predicted classes are determined by the class confusions. We make a second prediction with simpler classifier to discriminate the candidates. The evaluation shows that the strict hierarchical approach degrades performance, likely due to error propagation, while the graph-based hierarchy provides significant gains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.